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Abstract. A 4-strap ICRF antenna was designed and fabricated for plasma heating and
current drive in the Alcator C-Mod tokamak.  Initial upgrades were carried out in 2000
and 2001, which eliminated surface arcing between the metallic protection tiles and
reduced plasma–wall interactions at the antenna front surface. A boron nitride septum
was added at the antenna midplane to intersect electric fields resulting from rf sheath
rectification, which eliminated antenna corner heating at high power levels. The current
feeds to the radiating straps were reoriented from an E||B to E⊥B geometry, avoiding the
empirically observed ~15 kV/cm field limit and raising antenna voltage holding
capability. Further modifications were carried out in 2002 and 2003.  These included
changes to the antenna current strap, the boron nitride tile mounting geometry, and
shielding the BN-metal interface from the plasma.  The antenna heating efficiency, power
and voltage characteristics under these various configurations will be presented.

INTRODUCTION

The antenna design provides four vertical current straps in a configuration
that allows efficient heating as well as providing a directed launched wave
spectrum for current drive by changes in current strap phasing.1  An antenna’s
ability to deliver useful power to the plasma may be limited by the injection of
impurities into the plasma or by arcing at high voltage limits.  The 4-strap antenna
power capability has increased from an initial value of 5 MW/m2 to ~11 MW/m2

by eliminating impurity generation and improving high voltage handling.2,3,4

IMPURITY GENERATION BY PLASMA-FACING SURFACE
INTERACTIONS

Initial antenna operation in 1999 resulted in high levels of metallic
impurity influx at heating power levels above ~1.3 MW.  The impurity source
was identified from the melt damage found upon inspection after the initial
commissioning campaign.  The molybdenum tiles on separate ground elements
had melt damage, while those on the same ground element did not.  This suggests



a voltage was being developed across tiles on separate ground elements.  Induced
RF currents of ~25 A resulted in a tile-tile potential of ~100 V at 78 MHz,
sufficient to arc across the gaps under the local edge plasma conditions.  The gaps
were short-circuited in 2000 with stainless steel straps installed underneath the
plasma protection tiles, eliminating this problem.

Operation with the metal plasma-facing components was satisfactory, but
the level of Mo impurity at the plasma core was found to scale with the rf power.
Although the source rate was low, plasma screening was poor.5  The antenna’s
plasma protection tiles were therefore changed from the original molybdenum to
boron nitride.  No deleterious effects have been observed on plasma operation
resulting from the boron nitride.

A new front surface interaction limit appeared later in 2000 above 2.5
MW.  Camera images of ICRF operation revealed antenna side and corner hot
spots that were aligned along the edge magnetic field lines and resulted in
impurity injection and disruption (Figure 1).  An analysis of the hot spot
mechanism suggests that the tokamak’s field line pitch in front of the antenna

results in nonzero rf magnetic flux linkage to
tokamak field lines connecting antenna
surfaces.  The resulting rf electric field expels
electrons, and plasma neutrality results in ion
acceleration leading to an enhanced sheath
potential.6 All front protection tiles were
realigned with side tiles, all remaining exposed
metal surfaces were covered with boron nitride
or removed, and a central boron nitride septum
was installed to reduce the tokamak field line
connection length.

FIGURE 1.  Antenna front surface hotspots

Several of the top and bottom tiles fractured during the 2002 run period,
with the fragments falling through the plasma into the divertor chamber.  The
fragments appeared not to have a major impact on the plasma, but the newly
exposed metal surfaces reduced the antenna power level before metallic impurity
injection set in once more.  Disruption forces induced in the metal mounting
structure were transmitted to the boron nitride, which yielded under tensile stress.
The tiles and their fasteners were redesigned, and no losses have been observed in
2003 so far.

RF-induced arcing was detected in the metal spine supporting the central
septum tiles.  This was originally designed with slots to reduce induced currents,
but sufficient rf voltage developed across the slots in (0,0,0,0) phased operation to
arc across the gaps.  A new spine without slots was fabricated, and operation in
2003 so far has been successful.



ARCING IN ANTENNA INTERNAL STRUCTURE

During the 1999 operation arcing was observed along the direction of the
tokamak magnetic field between the high voltage portion of the antenna current
straps and adjacent resistive terminations of the Faraday shields.  Grounded
stainless steel cups were placed around the base of the Faraday shield rods to
protect the resistive terminations in 2000.7  Subsequent inspections showed no
damage.

Extensive arc damage was observed in 2000 between the striplines feeding
rf current to the antenna straps, in a direction along the tokamak edge magnetic
field.  An effective stripline voltage limit of ~15-20 kV in plasma (45 kV in
vacuum) limited the antenna heating power to ~2.5 MW.  This corresponded to an
empirical electric field limit of ~15 kV/cm under the local conditions, i.e. E||B,
and plasma edge neutral gas pressure up to ~0.5 mTorr.  The mechanism for this
breakdown is not clear.  Field emission initiation requires local field strengths
considerably higher than those present.  For gas breakdown, the Paschen curve
minimum is ~Torr-cm, while at the antenna we have ~mTorr-cm, with mean free
paths much greater than the electrode spacing.  Multipactoring initiation would
require lower electric fields or greater path lengths.

The striplines had been designed with E||B in order to achieve maximum
compactness, but a redesign was performed in 2001 to reorient the striplines to an
E⊥B configuration (Figure 2).   High voltage gaps were increased to reduce
electric fields, and in the case of arcing at the current strap crossover, electrodes
were reshaped to reorient the region of highest field.

FIGURE 2.  Original E||B current feed design (left) and modified E⊥B design (right).  The
tokamak magnetic field is roughly horizontal on left, and rises at ~30° on right.

Series arcing was observed in 2002 in bolted contacts both in the current
feeds and the antenna mounting plate.  These have been redesigned with more
bolts, improved mating surfaces, and copper plating where needed to improve
electrical contact.



SUMMARY

C-Mod has presented a challenge to install a high power (~4 MW) 4-strap
ICRF antenna in a tight space. Modifications have been made to the antenna
plasma-facing surfaces and the internal current-carrying structure.  At the present
time the antenna has performed up to 3 MW into plasma with heating phasing,
with good efficiency and no deleterious effects (Figure 3).

FIGURE 3.
3 MW pulse
into C-Mod.
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